Фармакокинетика дипептидного миметика BDNF ГСБ-106 у крыс
Ср, 26 Июнь 2019
446

Резюме. На крысах изучена фармакокинетика соединения ГСБ-106 после различных способов введения. После однократного перорального введения исследуемое вещество в организме крыс определяется на протяжении 4 ч. Период полуэлиминации составил 0,65 ч. Показано, что тканевая доступность ГСБ-106 в хорошо васкуляризированных органах (печень, почки, селезёнка) выше, чем в скелетной мускулатуре крыс. В органе-мишени — мозге данный показатель составил 0,05. После однократного перорального введения ГСБ-106 крысам в дозе 150,0 мг/кг в суточной моче исходное соединение не обнаружено, а в кале обнаружено 0,0001 % ГСБ-106 от введённой дозы. Абсолютная биодоступность соединения ГСБ-106 у крыс составила 5,6%.

Pharmacokinetics of dipeptide mimetic BDNF GSB-106 in rats

Resume. Pharmacokinetics of the GSB-106 in variety of administration ways in rats was studied. After single oral administration the test substance was determined for 4 h in the blood plasma. Half-life was 0.65 h. The GSB-106 tissue availability in high-vascularized organs (liver, kidney, spleen) was over then skeletal muscle. In brain (target-organ) that parameter was 0.05. In the 24-hour urine the parent compound was not detected and in the feces were determined of 0.0001 % GSB-106 after oral administration in dose 150 mg/kg. The absolute bioavailability of GSB-106 was 5.6 %.

Введение

Депрессия и связанные с ней расстройства психики в последние годы затронули во всех странах и регионах мира порядка 350 миллионов человек [1]. Большое число клинических и экспериментальных данных свидетельствуют о вовлечении в патогенез депрессии нейротрофинов, в частности мозгового нейротрофического фактора (brain-derivedneurotrophicfactor; BDNF). В ФГБНУ «НИИ фармакологии имени В.В. Закусова» на основе структуры четвёртой петли BDNF сконструирован и синтезирован низкомолекулярный миметик ГСБ-106, представляющий собой замещённый димерный дипептид, гексаметилендиамид бис(N-моносукцинил-L-серил-L-лизина) [2]. В процессе фармакологического скрининга (однократное введение в тесте вынужденного плавания по Порсолту) четырёх соединений (миметиков первой и четвёртой петель BDNF) дипептид ГСБ-106 был отобран как вещество, обладающее антидепрессивной активностью у мышей линии Balb/c [3]. Исследования ГСБ-106 invitro на культуре иммортализованных клеток линии НТ22 гиппокампа мыши показали, что в концентрации от 10–5 до 10–8 М это соединение проявляет нейропротективную активность на моделях окислительного стресса и глутаматной токсичности. Нейропротективное действие ГСБ-106 выявлено также на клетках линии SH-SY5Y нейробластомы человека в условиях действия нейротоксина 6-оксидофамина [4]. На крысах и мышах ГСБ-106 проявлял антидепрессивную активность в дозе 0,1–10 мг/кг внутрибрюшинно и перорально в моделях неизбегаемого плавания, подвешивания за хвост и выученной беспомощности [5]. ГСБ-106 оказывал стимулирующее влияние на нейрогенез в условиях субхронического стресса у мышей, вызванного контактом с хищником [6]. Предварительные токсикологические исследования показали, что ГСБ-106 нетоксичен (LD50 для беспородных мышей-самцов >4,5 г/кг) и проникает через гематоэнцефалический барьер.

Необходимым этапом разработки оригинального лекарственного средства является доклиническое изучение его фармакокинетики (ФК). Поэтому цель настоящего исследования заключалась в изучении процессов всасывания, распределения и экскреции соединения ГСБ-106 после однократного и многократного (4-кратного) внутривенного и перорального введения крысам.

Методы исследования

На рис. 1 представлена структурная формула изучаемого соединения.

Фармацевтическая субстанция представляет собой гигроскопичный порошок, белого цвета, без запаха, очень легкорастворима в воде, легко в диметилсульфоксиде и нерастворима в этиловом спирте, хлороформе. Молекулярная масса ГСБ-106 -746,85 г/моль.

Изучение фармакокинетики ГСБ-106 проводили на белых беспородных крысах-самцах (масса тела 200–300 г), полученных из питомника Филиал «Столбовая» ФГБУ науки «Научный центр биомедицинских технологий Федерального медико-биологического агентства» (Московская область). Фармацевтическую субстанцию вводили животным перорально и внутривенно в виде водного раствора в дозе 150 мг/кг. Содержание ГСБ-106 определяли в плазме крови, гомогенатах печени, селезёнки, скелетной мышцы, почек, мозге, через 0,0 (контроль), 5, 15 и 30 мин, 1,0; 2,0; 3,0; 4,0 и 6,0 ч после перорального введения исследуемого вещества и после внутривенного введения в плазме крови, через 0,0 (контроль), 3, 5, 15 и 30 мин, 1, 2, 3, 4 и 6 ч.

Образцы крови, тканей и органов крыс получали после декапитации животных. На каждую дискретную точку использовали по 5 животных. Для изучения экскреции ГСБ-106 с мочой и калом крыс (6 животных) собирали суточную мочу и кал, измеряли объём (массу) и закладывали для хранения в морозильную камеру.

Все манипуляции с экспериментальными животными выполнены в соответствии с нормативной документацией, касающейся гуманного обращения с животными, и стандартными операционными процедурами (СОП) лаборатории фармакокинетики ФГБНУ «НИИ фармакологии имени В.В. Закусова». Проведение экспериментов с животными одобрено Комиссией по биомедицинской этике ФГБНУ «НИИ фармакологии имени В.В. Закусова».

Полученные путём декапитации животных образцы крови центрифугировали (2 500 об/мин в течение 10 мин) с целью получения плазмы.

Плазму крови крыс объёмом 100 мкл вносили в пластиковую пробирку типа Eppendorf объёмом 1,5 мл, добавляли 100 мкл водно-метанольного раствора (соотношение компонентов 1:1, об./об.), встряхивали на вортексе 30 с. К полученному раствору прибавляли 300 мкл ацетонитрила для преципитации белков плазмы крови, встряхивали на вортексе в течение 30 с. Полученные образцы центрифугировали при 12 000 об./мин в течение 15 мин, надосадочную жидкость отделяли, после чего к ней добавляли 800 мкл дихлорметана для отделения водного слоя, встряхивали на вортексе (30 с) и центрифугировали при 10 000 об./мин в течение   5 мин. Далее для анализа отбирали 50 мкл верхнего водного слоя.

В пластиковую пробирку вместимостью 12 мл вносили навески органов/тканей массой около 500 мг (1 почку целиком), добавляли 500 мкл водно-метанольного раствора (соотношение компонентов 50:50, об./об.), гомогенизировали. К гомогенату добавляли 1,5 мл ацетонитрила для преципитации белков, встряхивали на вортексе в течение 30 с. Полученные образцы центрифугировали при 12 000 об./мин в течение 15 мин, надосадочную жидкость отделяли, после чего к ней добавляли 4,0 мл дихлорметана для отделения водного слоя, встряхивали на вортексе и центрифугировали при 10 000 об./мин в течение 5 мин. Далее отбирали около 50 мкл верхнего водного слоя для анализа.

Мочу и кал крыс собирали в течение 24 ч после однократного п/о введения соединения в дозе 150 мг/кг. Образцы мочи крыс, хранящиеся при –50 C, размораживали при комнатной температуре. Мочу объёмом 100 вносили в пластиковую пробирку типа Eppendorf объёмом 1,5 мкл мл, добавляли 100 мкл водно-метанольного раствора (соотношение компонентов 1:1, об./об.), встряхивали на вортексе 30 с. Далее поступали как описано при обработке плазмы крови.

Кал высушивали в сухожаровом шкафу при температуре 40 С в течение 3 ч. Навеску кала (около 0,5 г) измельчали, суспендировали, добавляя 500 мкл воднометанольного раствора (соотношение компонентов 50:50, об./об.), гомогенизировали. Далее поступали как при обработке образцов органов и тканей.

Для количественного определения ГСБ-106 в плазме крови, моче, кале и гомогенатах органов и тканей животных использовали высокоэффективную жидкостную хроматографию с масс-спектрометрическим детектированием [7].

Предел детектирования ГСБ-106 составил 25 нг/мл. Основные ФК параметры ГСБ-106 рассчитаны модельно-независимым методом [8]: AUC0–t – площадь под фармакокинетической кривой от нуля до 4 ч (площадь под кривой концентрация – время) после в/в или п/о введения; C0 – кажущаяся концентрация вещества в плазме крови после в/в введения в нулевой момент времени; Тmax — время достижения максимальной концентрации исследуемого соединения в плазме крови после п/о введения; Cmax — максимальная концентрация в плазме крови после п/о введения; Css — концентрация исследуемого вещества в плазме крови в стационарном состоянии; MRT — среднее время удерживания исследуемого соединения в организме; kel — константа скорости элиминации; t1/2el — период, за который выводится половина введенной и всосавшейся дозы анализируемого вещества; Cl — плазменный клиренс после в/в введения; Cl/F — плазменный клиренс после п/о введения; Vd — кажущийся объём распределения после в/в введения; Vd/F — кажущийся объём распределения после п/о введения; fт — тканевая доступность; faбс. — абсолютная биодоступность.

Результаты и их обсуждение

Усредненные ФК профили ГСБ-106 в плазме крови крыс после однократного п/о и в/в введения представлены на рис. 2.

Из рис. 2 видно, что снижение концентраций исследуемого соединения в плазме крови независимо от способа введения носит моноэкспоненциальный характер. Поскольку на каждую временную точку использовали по 5 животных, результирующая ФК-кривая была построена по усреднённым концентрациям, поэтому при расчётах ФК-параметров отсутствует статистическая обработка результатов. ФК-характеристики исследуемого соединения в плазме крови животных после однократного п/о введения представлены в табл. 1.

После п/о введения ГСБ-106 крысам вещество быстро всасывается из желудочно-кишечного тракта (ЖКТ) и определяется в плазме крови на протяжении 4 ч. Учитывая, что период полуэлиминации (t1/2el) составил 0,65 ч, ГСБ-106 можно отнести к группе «короткоживущих» лекарственных веществ.

Такие фармакокинетические параметры, как t1/2el, среднее время удерживания вещества в организме (MRT — 1,34 ч) и общий плазменный клиренс (Cl/F — 51,93 л/ч/кг) указывают на короткое нахождение исследуемого вещества в системном кровотоке животных. Максимальная концентрация (Сmax) в плазме крови регистрировалась через 1,0 ч (Tmax) после введения лекарственного вещества, а её величина составила 1,949 мкг/мл.

Величина кажущегося объёма распределения (Vd/F) ГСБ-106 после п/о введения в дозе 150 мг/кг составила 48,96 л/кг. Кажущийся объём распределения обычно не эквивалентен анатомическому объёму, а отражает распределение препарата и степень его связывания в организме. Так, если препарат связывается преимущественно белками крови, Vd будет меньше, чем реальный. С другой стороны, преимущественное связывание препарата во внесосудистом пространстве приводит к превышению значения Vd над реальным объёмом. В нашем случае расчёт величины Vd/F дал высокие значения, указывающие, что ГСБ-106 проникает в органы и ткани крыс [9].

В отличие от п/о введения, в/в введение ГСБ-106 в дозе 150 мг/кг позволяет проследить кинетику снижения концентраций более 4 ч. Однако для корректной оценки абсолютной биодоступности мы ограничили время регистрации концентраций исследуемого вещества так же 4 часами.

Усредненная концентрационная кривая ГСБ-106 и соответствующие ей ФК-параметры исследуемого соединения в плазме крови животных после однократного в/в введения представлены на рис. 2 и в табл. 1. Такие фармакокинетические параметры, как t1/2el, равный 0,65 ч, MRT – 1,40 ч, также указывают на относительное короткое нахождение исследуемого вещества в системном кровотоке животных. Кажущаяся начальная концентрация (С0) ГСБ-106 в плазме крови крыс составила 340,228 мкг/мл.

Величина Vd значительно отличалась от значения, полученного после п/о введения, и составила 2,70 л/кг. Абсолютная биодоступность fабс. составила 5,59 %, что говорит о потенциальной возможности разработки таблетированной лекарственной формы.

Важным этапом при проведении фармакокинетических исследований является изучение тканевой доступности новых лекарственных средств. Основным результатом процессов распределения является транспорт лекарственного средства в зону действия, где оно взаимодействует со структурами, определяющими эффект препарата. На основании определения величины тканевой доступности возможна количественная оценка интенсивности проникновения действующего вещества в периферические ткани.

Распределение ГСБ-106 изучали в органах и тканях, отличавшихся друг от друга различной степенью кровоснабжения (селезёнка, скелетные мышцы), органах, обеспечивающих элиминацию (печень, почки), органе-мишени — мозге. Установлено, что ГСБ-106 регистрируется во всех исследуемых органах и тканях. На рис. 3 и в табл. 2 представлены полученные результаты.

В распределении препарата по органам прослеживается значительная гетерогенность.

Изучаемое соединение определяется в органах в течение 4 ч. Время достижения максимальной концентрации (Tmax) ГСБ-106 во всех исследуемых органах составило 1,0 ч.

Максимальная концентрация (Сmax) ГСБ-106 возрастала в ряду мозг — мышцы — селезёнка — печень — почки — плазма крови (0,016; 0,090; 0,132; 0,178; 0,317; 1,949; мкг/г(мл), соответственно).

Анализ величин тканевой доступности ГСБ-106 показал, что исследуемое соединение наиболее интенсивно распределяется в хорошо васкуляризированных органах (почки, печень, селезёнка), и в значительно меньшей степени — в умеренно и слабо васкуляризированных органах (скелетные мышцы) (см. рис. 3). Тканевая доступность ГСБ-106 в системе «почки — плазма крови» составила 0,25; «печень — плазма крови» — 0,13. Для системы «селезёнка — плазма крови» этот показатель составил 0,12. Для скелетных мышц — 0,06.

Из-за недостаточно высокой чувствительности методики количественного определения ГСБ-106 в биоматериале (25 нг/мл) определить его концентрации в органе-мишени (мозге) во все дискретные временные интервалы наблюдения не удалось (см. табл. 2). Поэтому данные fт после п/о введения ГСБ-106 для мозга отсутствуют. Оценить величину тканевой доступности исследуемого соединения в мозге оказалось возможным после в/в введения ГСБ-106. Для органамишени — мозга — fт составила 0,05 (см. рис. 3).

Анализ фармакокинетического параметра, характеризующего элиминацию изучаемого соединения — t1/2el, позволяет заключить, что ГСБ-106 довольно быстро выводится из организма животных, на что указывают значения периода полувыведения препарата из органов, которые составляют от 0,74 ч для скелетных мышц и до 1,18 ч для селезёнки.

После однократного п/о введения фармацевтической субстанции ГСБ-106 в дозе 150 мг/кг в суточной моче крыс исходное соединение не обнаружено, а в суточном кале крыс в среднем обнаружено около 0,0001 % исходного соединения. Таким образом ГСБ-106 полностью всасывается из ЖКТ экспериментальных животных в системный кровоток и затем, по-видимому, подвергается интенсивной биотрансформации с образованием метаболитов.

Дополнительно изучена фармакокинетика ГСБ-106 в плазме крови крыс после его многократного (4-кратного) п/о введения в дозе 150 мг/кг. Интервал дозирования исследуемого вещества определяли исходя из величины t1/2el ГСБ-106 после однократного п/о введения, т. е. 0,65 ч. Другими словами, через 3,3 ч после введения уровень исследуемого вещества в плазме крови составит немногим более 3,1 % максимальной концентрации. Поэтому для обеспечения достаточно высоких концентраций ГСБ-106 в плазме крови после его п/о введения, а также для удобства дозирования препарат вводили каждые 2 ч. Фармакокинетические параметры исследуемого соединения в плазме крови животных представлены в табл. 3.

Из табл. 3 следует, что после 4-кратного введения внутрь ГСБ-106 в дозе 150 мг/кг (общая доза равна 600 мг/кг) дозонезависимый параметр – период полувыведения (см. табл. 1) практически не изменился в сравнении с однократным введением. Его величина составила 0,82 ч. Кажущийся объём распределения увеличился на 20 % по сравнению с однократным п/о введением (с 48,96 до 61,10 л/кг). Полученные результаты указывают, что ГСБ-106, по-видимому, практически не кумулируется в организме крыс.

Выводы

1.               После однократного перорального введения ГСБ-106 в дозе 150 мг/кг в организме крыс исследуемое соединение определяется на протяжении 4 ч. Период полувыведения ГСБ-106 из плазмы крови после перорального введения составил 0,65 ч.

2.               Показано, что ГСБ-106 распределяется по органам и тканям неравномерно. Тканевая доступность уменьшалась в ряду: почки>печень>селезёнка> мышцы>мозг (0,25>0,13>0,12>0,06>0,05).

3.               После однократного перорального введения ГСБ-106 в дозе 150 мг/кг в суточной моче исходное соединение не обнаружено, а в суточном кале регистрировалось крайне незначительное количество неизмененного соединения от введенной дозы.

4.               Абсолютная биодоступность соединения ГСБ-106 после однократного перорального введения составила 5,6 %, что говорит о перспективе создания таблетированной лекарственной формы.

Литература / References

1.               World Health Organization, World suicide prevention day 2012 http:// www.who.int/mediacentre/events/annual/world_suicide_prevention_day/ en/Accessed 16.6.2012.

2.               Патент РФ на изобретение № 2410392 / 27.01.11. Бюлл. № 3 Середенин С.Б., Гудашева Т.А. Дипептидные миметики нейтрофинов NGF и BDNF [Patent RUS № 2410392/ 27.01.11. Byul. №3 Seredenin S., Gudasheva T. Dipeptide mimetics of NGF and BDNF neutrophins. (In Russ).] URL: http://www.freepatent/2572076. Ссылка активна на 09.09.2018.

3.               Гудашева Т.А., Тарасюк А.В., Помогайбо С.В. и др. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фактора // Биоорганическая химия. – 2012. – Т. 38. – № 8. – С. 280–290. [Gudasheva T, Tarasyuk A, Pomogaybo S, et al. Design and synthesis of dipeptide mimetics of brain-derived neurotrophic factor. Bioorganicheskaya khimia. 2012;38(8):280-290 (In Russ).]

4.               ЛогвиновИ.О., АнтиповаТ.А., ГудашеваТ.А. идр. Нейропротективные свойства дипептидного миметика мозгового нейротрофического фактора ГСБ–106 в экспериментах in vitro // Бюллетень экспериментальной биологии и медицины. – 2013. – Т. 155. – № 3. – С. 319–323. [Logvinov I, Antipova T, Gudasheva T, et al. Neuroprotective properties of dipeptide mimetic of brain-derived neurotrophic factor. Bulleten experimentalnoyi biologii i medicini. 2013;155(3):319-323 (In Russ).]

5.               СереденинС.Б., ВоронинаТ.А., ГудашеваТ.А., идр. Антидепрессивный эффект оригинального низкомолекулярного миметика BDNF, димерного дипептида ГСБ-106 // Acta Naturae. – 2013. – Т. 5. – № 4(19). – С. 116–120. [Seredenin S, Voronina T, Gudasheva T, et al. Antidepressivnyi effekt originalnogo nizkomolecularnogo mimetika BDNF, dimernogo peptida GSB-106. Acta Naturae. 2013;5(4):116–120 (In Russ).]

6.               Гудашева Т.А., Поварнина П.Ю., Середенин С.Б. Дипептидный миметик мозгового нейротрофического фактора предотвращает нарушение нейрогенеза у стрессированных мышей // Бюлл. экспер. биол.и мед. – 2016. – Т. 162. – № 10. – С. 448–451. [Gudasheva T, Povarnina P, Seredenin S. Dideptide mimetic of brain-derived neurotrophic factor prevents of neurogenesis damage in stressed mice. Bulleten experimentalnoyi biologii i medicini. 2016;162(10): 448–451. (In Russ).]

7.               Грибакина О.Г., Бочков П.О., Шевченко Р.В., Жердев В.П. Валидация методики количественного определения соединения ГСБ-106 в плазме крови крыс с использованием ВЭЖХ/МС. /5-й съезд фармакологов России «Научные основы поиска и создания новых лекарств»; май 14–18, 2018; Ярославль. [Gribakina O, Bochkov P, Shevchenko R, Zherdev V. Validaciya metodiki kolichestvennogo opredeleleniya soedineniya GSB-106 v plasme krovi kris s ispolzovaniem HPLC/MS. (Congress proceedings) 5-th Pharmacologists Congress of Russia “Nauchnye osnovy poiska i sozdaniya novyh lekarstv. 2018 May 14–18; Yaroslavl (In Russ).] DOI:10.30906/0869-2092-2018-81.

8.               Агафонов А.А., Пиотровский В.К. Программа M-ind системы оценки параметров фармакокинетики модельно-независимым методом статистических моментов // Химико-фармацевтический журнал. – 1991. – Т. 25. – № 10. – С. 16–19. [Agafonov A, Piotrovskiy V. M-ind program of pharmacokinetic parameters system evaluation by modelindependent method of statistic moments. Khimiko-farmacevticheskiyi zhurnal. 1991;25(3):16–19. (In Russ).]

9.               Сергиенко В.И., Джеллифф Р., Бондарева И.Б. Прикладная фармакокинетика: основные положения и клиническое применение. – М.: Издательство РАМН; 2003. [Sergienko VI, Gelliff R, Bondareva IB. Prikladnaya farmakokinetika i klinicheskoye priminenie. Moscow: Izdatelstvo RAMN; 2003. (In Russ).]

Похожие статьи